پیشبینی تراز آب دریاچه ارومیه با استفاده از روشهای سری زمانی، شبکه عصبی مصنوعی و شبکه عصبی- موجکی
Authors
Abstract:
دریاچه ارومیه دومین دریاچه شور جهان است و با توجه به معیارهای اجتماعی- اقتصادی و زیست محیطی نقش مهمی در منطقه شمالغرب ایران دارد که در سالهای اخیر با مشکلاتی مواجه شده است و به دلیل خشکسالی، استفاده بیش از حد آبهای سطحی و ساخت سدها تراز سطح آب آن کاهش یافته است. یکی از فاکتورهای مهم که در مدیریت صحیح در هر زمینهای، تأثیر دارد، داشتن یک دید و نگرش مناسب از اتفاقات آینده در آن زمینه است به همین دلیل شبیهسازی و سپس پیشبینی متغیرهای هیدرولوژیکی از اهمیت ویژهای برخوردار است. بنابراین در پژوهش حاضر به مقایسه سه روش پیشبینی سری زمانی آریما، شبکه عصبی مصنوعی و شبکه عصبی- موجکی جهت ارائه بهترین روش پیشبینی تراز سطح آب دریاچه ارومیه در مقیاس ماهانه پرداخته شده است. نتایج حاصل با توجه به معیار ضریب تبیین و جذر میانگین مربعات خطا مقایسه شد که نشاندهنده عملکرد بهتر شبکه عصبی- موجکی در مقایسه با دو روش سری زمانی آریما و شبکه عصبی مصنوعی، به دلیل لحاظ نمودن تغییرات ماهانه، فصلی و سالانه در قالب تجزیه سریهای زمانی میباشد.
similar resources
استفاده از مدل های ترکیبی ماشین بردار پشتیبان - موجکی و شبکه عصبی -موجکی در پیشبینی تراز آب زیرزمینی دشت اردبیل
چکیده آبهای زیرزمینی همواره به عنوان یکی از منابع مهم و عمده ی تأمین آب شرب و کشاورزی به ویژه در مناطق خشک و نیمه خشک مطرح بودهاند. به منظور آگاهی از وضعیت این منابع و مدیریت بهینه ی آنها، لازم است پیشبینی دقیقی از نوسانات سطح آب زیرزمینی صورت گیرد. در این تحقیق اطلاعات 15 پیزومتر موجود در دشت اردبیل مورد استفاده قرارگرفت. از تبدیل موجک و روش خوشهبندی به ترتیب برای پیشپردازش زمانی و مک...
full textمقایسه روشهای سری زمانی و شبکه عصبی مصنوعی در پیشبینی تبخیر-تعرق مرجع (مطالعه موردی: ارومیه)
تبخیر-تعرق یکیازمؤلفههایمهمدرمصرفمنابعآب در بخش کشاورزیمیباشد. لذا ارائه روشی که پیشبینی مناسب و دقیقی از میزان تبخیر-تعرق مرجع را بدهد، میتواند در اخذتصمیم بهینهبرایبرنامهریزی منابع آب کمککند. دراینتحقیق،روشهای سری زمانی و شبکههای عصبی مصنوعی درپیشبینیتبخیر-تعرق مرجع ماهانهدرایستگاهسینوپتیک ارومیهموردمقایسه قرار گرفتند. بدین منظور در گام نخست بهترین مدل سری زمانی از بین مدلهای A...
full textپیش¬بینی جریان روزانه با استفاده از شبکه¬های عصبی مصنوعی و عصبی- موجکی (مطالعه موردی: رودخانه باراندوزچای)
پیشبینی دقیق جریان در رودخانهها یکی از مهمترین ارکان در مدیریت منابع آبهای سطحی به ویژه جهت اتخاذ تدابیر مناسب در مواقع سیلاب و بروز خشکسالیها است. به دلیل اهمیت پیشبینی جریان رودخانه، در این تحقیق جریان روزانه رودخانهی باراندوزچای در دو ایستگاه بیبکران و دیزج طی یک دورهی آماری 20 ساله با استفاده از مدل عصبی- موجکی (WNN) که تلفیق آنالیز موجک و شبکه عصبی مصنوعی (ANN) میباشد، پیشبینی گرد...
full textپیش بینی تراز آب زیرزمینی دشت شاهرود استفاده از شبکه عصبی مصنوعی تابع پایه شعاعی
Groundwater level prediction is an important issue in scheduling and managing water resources. A number of approaches such as stochastic, fuzzy networks and artificial neural network have been used for such prediction. A neural network model has been employed in this research for Shahrood plain groundwater level prediction. For this reason, statistical parameters of groundwater level fluct...
full textریزمقیاس کردن مکانی – زمانی سری های زمانی بارش با استفاده از مدل ترکیبی موجک – شبکه عصبی مصنوعی
با توجه به نیاز شبیه سازی سری های زمانی بارش در مقیاس های مختلف برای مقاصد مهندسی از یک طرف و عدم ثبت این پارامترها در مقیاس های ریز بدلیل مشکلات اجرایی و اقتصادی از طرف دیگر، ریزمقیاس کردن بارش به مقیاس مورد نظر، یک امر ضروری می باشد. در این مطالعه، برای ریزمقیاس کردن سری زمانی بارش ایستگاه های تبریز و سهند، با توجه به ویژگی های غیرخطی مقیاس های زمانی، مدل ترکیبی موجک - شبکه عصبی مصنوعی (WANN)...
full textMy Resources
Journal title
volume 6 issue 4
pages 64- 77
publication date 2016-08-22
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023